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Abstract
We study the problem of developing a Smart Order Routing algo-

rithm that learns how to optimize the dollar volume, i.e., the total

value of the traded shares, gained from slicing an order across mul-

tiple dark pools. Our work is motivated by two distinct issues: (i)

the surge in liquidity fragmentation caused by the rising popular-

ity of electronic trading and by the increasing number of trading

venues, and (ii) the growth in popularity of dark pools, an exchange

venue characterised by a lack of transparency. This paper critically

discusses the known dark pool literature and proposes a novel al-

gorithm, namely the DP-CMAB algorithm, that extends existing

solutions by allowing the agent to specify the desired limit price

when placing orders. Specifically, we frame the problem of dollar

volume optimization in a multi-venue setting as a Combinatorial

Multi-Armed Bandit (CMAB) problem, representing a generaliza-

tion of the well-studied MAB framework. Drawing from the rich

MAB and CMAB literature, we present multiple strategies that

our algorithm may adopt to select the best allocation options. Fur-

thermore, we analyze how exploiting financial domain knowledge

improves the agents’ performance. Finally, we evaluate the DP-

CMAB performance in an environment built from real market data

and show that our algorithm outperforms state-of-the-art solutions.

CCS Concepts
• Theory of computation→ Online learning algorithms; On-
line learning theory; Sequential decision making.
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1 Introduction
Traditionalmarket structures have been the subject ofmajor changes

during the past decades, such as advances in technology and the

introduction of new regulations, causing a surge in liquidity frag-

mentation. In this scenario, electronic trading platforms compete

against each other on execution cost and speed, increasing the

demand for intelligent order routing software, a.k.a. Smart Or-

der Routing (SOR) [Cont and Kukanov 2017; Laruelle et al. 2011;

Maglaras et al. 2012; Pujol and Brueckner 2009]. In particular, SOR

refers to a class of algorithms that optimally split an order over

multiple venues to minimize transaction fees and market impact,

taking into account all the different allocation opportunities and

placing orders based on the best available options. In this work, we

address the problem of SOR across dark pool venues, namely the

Dark Pool Smart Order Routing (DPSOR) problem.

Dark pools are equity trading venues characterized by a com-

plete lack of transparency [Shorter and Miller 2014]. Differently

from the so-called 𝑙𝑖𝑡 venues, this type of exchange does not reveal

any information about the prices and volumes therein, allowing

participants to perform trades of considerable amounts without

advertising to the general public [Zhu 2013]. Dark pools emerged

in the late 1980s and have since experienced rapid growth in popu-

larity. In 2009, more than 40 dark pools were operative in the US

alone, with a trading volume growing annually at an average rate

of 40% [Degryse et al. 2009; Zhu 2013]. According to the data, the

US market share of dark pools increased from about 7.51% in 2008

to 16.57% in 2015 [Ye 2016].

We define the DPSOR problem as a sequential decision problem

in which, at each time step 𝑡 , an agent, given a volume of shares

𝑉 to execute, has to consume as many shares as possible by allo-

cating them across 𝐾 dark pools while maximizing the value of

the traded assets. Dark pools’ complete lack of transparency is the

main characterizing feature of our problem due to the censoring
aspect intrinsic to this type of trade. Indeed, if 𝑣 shares are allocated

to a dark pool and all of them are executed, the investor only learns

that at least 𝑣 units were available in the venue but not what would

have been the maximum amount that could have been executed.

On the other hand, submitting a really large amount of shares 𝑣

that ensures that 𝑣 < 𝑣 shares are executed (𝑣 is the maximum

volume that was available at that dark pool) gives an exact picture

of the liquidity present, but 𝑣 − 𝑣 shares are left unexecuted, which
is a loss for the investor. The online learning literature tackled the

problem of allocation in the dark pool setting, providing a partial

solution to the problem, with the work by Agarwal et al. [2010];

https://doi.org/10.1145/3533271.3561728
https://doi.org/10.1145/3533271.3561728
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Ganchev et al. [2010]. Although effective and suitable for the DP-

SOR problem, the above approaches do not consider the possibility

of specifying the desired execution price, thus considering only

market orders and no limit orders.
1
However, incorporating this

factor is crucial to develop a robust SOR algorithm whose foremost

goal is to optimize the trade’s dollar volume, which is the trade’s

execution price multiplied by its volume. Thus, our goal is to devise

an algorithm that creates and maintains a dynamic estimate of the

hidden liquidity present in each dark pool and uses this information

to make optimal joint routing and pricing decisions.

Original Contribution We propose a novel online learning algo-

rithm that frames the DPSOR problem as a Combinatorial Multi-
Armed Bandit (CMAB) problem [Chen et al. 2013], that handles

censored feedback and allows to specify the limit price at which to

execute the order in the dark pool. The Multi-Armed Bandit (MAB)

framework, originally formulated by [Auer et al. 2002], has already

proven effective in dealing with financial settings, e.g., in pricing

settings [Mussi et al. 2022; Trovò et al. 2018], and in online portfolio

optimization [Bernasconi de Luca et al. 2021; Das et al. 2013; Vittori

et al. 2020]. The extension of the classical MAB framework to the

CMAB one is required by the need to specify the trade’s volume as

a combination of multiple allocations, each indicating the trading

volume, the destination venue, and the desired limit price.

In this paper, we extend the problem formulation presented

in the works of Agarwal et al. [2010]; Ganchev et al. [2010] to a

more general setting in which the agent can choose among a set of

available prices. Furthermore, we conceive a novel set of algorithms

with regret guarantees, namely DP-CMAB, designed to solve the

DPSOR problem. We also introduce specific learning algorithms

exploiting the correlation existing among volumes and prices of

the DPSOR problem. Finally, we demonstrate the performance of

the proposed algorithms in an extensive experimental campaign

on a realistic simulation framework, comparing them with state-of-

the-art approaches.

2 Related Works
Order routing problems have been addressed by a stream of re-

search that has gained popularity with the increase in liquidity

fragmentation. In particular, works from the economic field try

to understand the effects of such fragmentation, such as the one

by Hendershott and Mendelson [2000], which analyses interactions

between lit exchanges and dark pools, and the one by Foucault and

Menkveld [2008] that studies the effects of these algorithms on the

markets.

Among the first empirical approaches to order routing is the

work by Almgren and Harts [2008], which proposes a heuristic rule

to estimate hidden liquidity. It can be used both in the case of lit ex-

changes (iceberg orders) and in the case of dark pools. Nonetheless,

it does not propose a methodology for optimally splitting the orders

among different venues. On the other hand, Laruelle et al. [2011]

approach the problem from a more rigorous perspective, framing

it as an optimization problem with constraints and solving it with

also with a reinforcement learning approach. Maglaras et al. [2012]

concentrates on lit exchanges and derives a characterization of the

1
Limit orders are common in dark pools, see, for instance, JPM-X at www.jpmorgan.

com/content/dam/jpm/cib/complex/content/markets/aqua/pdf-0.pdf.

market equilibrium. Instead, Cont and Kukanov [2017] propose

a stochastic algorithm that computes the optimal routing policy

in the case of lit exchanges. Notably, the above-mentioned works

cannot be applied to order routing in dark pools where liquidity is

completely hidden.

The order routing problem is closely connected to optimal exe-

cution, studied by Almgren and Chriss [2001]; Bertsimas and Lo

[1998], among others. These works aim at minimizing transaction

costs and market impact with temporal slicing but focus on a single

venue. In general, optimal execution approaches use market orders,

but there also exist extensions that enable choosing the price using

limit orders, such as the work by Guéant et al. [2012]. The inter-

ested reader can refer to the book by [Guéant 2016] which proposes

an in-depth analysis of optimal execution approaches. Finally, the

work by Kratz and Schöneborn [2014] analyzes the hybrid problem

of liquidating a portfolio using market orders on both a lit exchange

and a dark pool. All these works assume perfect knowledge of the

dark pool’s underlying model and solve the problem analytically.

Unfortunately, such approaches cannot be applied in real-life SOR

due to the lack of information about the dark pools’ liquidities.

Another way of modeling the SOR problem has been provided by

the techniques of the online learning field. In particular, the starting

point for our model formalization is the well-known newsvendor
problem [Qin et al. 2011] from the operations research literature.

In this setting, each day, the agent needs to choose a quantity of

a good (the newspaper) to purchase at a fixed per-unit price and

uncertain demand. The work by Huh and Rusmevichientong [2009]

extends this formulation by introducing a non-parametric approach

and censored demand, due to which, when the agent buys a small

quantity of the good, she only observes the sold quantity without

having access to the realized demand. However, this work limits its

strategy to a single selling venue and, therefore, is not suitable for

its application to the SOR setting in which one has to deal with a

fragmented market.

The works of Ganchev et al. [2010] and Agarwal et al. [2010] are

closely related to ours since they extend the framework presented

by Huh and Rusmevichientong [2009] by taking into account a

multi-venue environment. Specifically, Ganchev et al. [2010] design

an algorithm that uses the Kaplan-Meier estimators to produce an

estimate of the tail probabilities of the total liquidity available in

each dark pool. Based on these estimates, their agent allocates the

available units by greedily choosing the dark pools with the highest

tail probabilities estimates and receives observations from the envi-

ronment that are, in turn, used to update the tail probabilities. The

work of Agarwal et al. [2010] is an extension of such a work to an

adversarial scenario, which obtains improvements in the i.i.d. setup

as well. Our work extends the mentioned approaches by allowing

the agent to choose the desired price in addition to the destination

venue with the objective of optimizing the dollar volume from the

trade. As mentioned before, the above works are not taking into

account the possibility of specifying the asset price, and therefore

their explicit goal is to consume as many available units as possible,

while no optimization in terms of dollar value is adopted.

www.jpmorgan.com/content/dam/jpm/cib/complex/content/markets/aqua/pdf-0.pdf.
www.jpmorgan.com/content/dam/jpm/cib/complex/content/markets/aqua/pdf-0.pdf.
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3 Problem Formulation
In this section, we formulate the DPSOR problem. At each discrete

round 𝑡 ∈ [𝑇 ], over a time horizon 𝑇 ∈ N, an agent (also referred

to as learner) distributes a total volume 𝑉 ∈ N of units of an asset

among𝐾 ∈ N different dark pool venues.
2
For each unit of the asset

assigned to a dark pool, we need to specify a price among a set of

ordered prices P = {𝑝1, . . . , 𝑝𝑁 }, with 𝑁 ∈ N and s.t. 𝑝𝑖−1 < 𝑝𝑖 , i.e.,

to distribute the given volume across the venues and the desired

price for each unit.
3,4

Formally, the learner has to select an allocation matrix A𝑡 ∈
N𝐾×𝑁 , whose generic element 𝐴𝑡

𝑘𝑛
represents the quantity it al-

locates at round 𝑡 to the 𝑘-th dark pool at price 𝑝𝑛 . Note that, in

the considered scenario, the available asset units are treated as

perishable goods, meaning that all the shares not allocated at the

current round are not available anymore at the following one.

Subsequently, the agent receives feedback from the environment,

consisting of the number of units 𝑟𝑡
𝑘𝑛

consumed at round 𝑡 by the

𝑘-th dark pool at price 𝑝𝑛 . Here, 𝑟
𝑡
𝑘𝑛

= min{𝐴𝑡
𝑘𝑛
, 𝑠𝑡
𝑘𝑛
}, where 𝑠𝑡

𝑘𝑛
represents the actual liquidity present at time 𝑡 in the 𝑘-th dark

pool at price 𝑝𝑛 . Indeed, if 𝑟
𝑡
𝑘𝑛

= 𝐴𝑡
𝑘𝑛

, we denote the feedback as a

censored observation, because the agent only gathers the information

that 𝑟𝑡
𝑘𝑛
≤ 𝑠𝑡

𝑘𝑛
. Otherwise, if 𝑟𝑡

𝑘𝑛
< 𝐴𝑡

𝑘𝑛
, we say that the agent has

received a direct observation, since it must be the case that 𝑟𝑡
𝑘𝑛

= 𝑠𝑡
𝑘𝑛

.

The goal of the agent is to find an algorithm𝔘 providing, at each

round 𝑡 ∈ [𝑇 ], an allocation A𝑡 that maximizes the dollar volume

of the asset, defined as:

𝑅𝑡 (𝔘) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

𝑟𝑡
𝑘𝑛
𝑝𝑛 . (1)

3.1 Formalizing DPSOR as a CMAB
A generic CMAB [Chen et al. 2013] consists in a tuple:

(M,S, 𝝁, 𝑓𝝁 (·),Opt(·)), (2)

whereM is a set of arms, S ⊂ 2
M

is the set of the feasible set of

arms (a.k.a. superarms) the learner is allowed to choose at each

round, 𝝁 is associating a value 𝜇𝑖 of including arm in 𝑖 ∈ M in the

superarm, 𝑓𝝁 : S → R+ is a function providing the reward associ-

ated to a feasible superarm, and Opt(𝑉 , 𝝁) is an oracle providing

the arm 𝑆𝝁 ∈ S that maximizes the function 𝑓𝝁 (·). We denote with

𝑟∗ the expected dollar value provided by the optimal superarm,

formally 𝑟∗ := 𝑓𝝁 (Opt(V, 𝝁)).
In the DPSOR case, the available arms corresponds to the ele-

ments of the matrix 𝐴𝑡 and the set of the feasible superarms S is

composed by all the matrices𝐴𝑡 satisfying the following constraint:

𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

𝐴𝑡
𝑘𝑛

= 𝑉 , (3)

i.e., requiring the agent to allocate all the available units. We re-

mark that this formulation, differently from the ones by [Agarwal

2
For a generic number𝑇 ∈ N, we denote the set {1, . . . ,𝑇 } using the symbol [𝑇 ].

3
Note that the scenario considered by Agarwal et al. [2010]; Ganchev et al. [2010] is a

special case of ours in which you can execute all the dark pools at a single price, the

same for all the venues.

4
For the sake of presentation, we assume all the dark pools allow to set prices in P.
The extension to a setting with different price sets is straightforward.

Algorithm 1 DP-CMAB

1: Parameters: number of dark pools 𝐾 , prices set P, volume 𝑉

2: Initialize 𝛼𝑡
𝑘𝑛𝑣

= 𝛽𝑡
𝑘𝑛𝑣

= 1 ∀𝑘 ∈ [𝐾], 𝑛 ∈ [𝑁 ], 𝑣 ∈ [𝑉 ]
3: for 𝑡 ∈ [𝑇 ] do
4: Let 𝑉 be the volume given to the agent

5: for arms 𝑖 ∈ M do
6: Define 𝜃𝑡

𝑘𝑛𝑣
according to Equation (6), (7), or (8)

7: 𝐴𝑡 ← Opt(𝑉 , 𝜽 )
8: Play allocation 𝐴𝑡

9: Receive feedbacks 𝑟𝑡
𝑘𝑛𝑣

on the arms selected in the allocation

𝐴𝑡

10: Update the parameters of the distributions 𝛼𝑡
𝑘𝑛𝑣

and 𝛽𝑡
𝑘𝑛𝑣

corresponding to the arms in the allocation 𝐴𝑡

et al. 2010; Ganchev et al. 2010], allows intra-venue routing, where
multiple allocations to the same financial venue at different prices

are possible.

In this setting 𝝁 ∈ R𝐾×𝑁×(𝑉+1) is a 3 dimensional matrix whose

elements 𝜇𝑘𝑛𝑣 corresponds to the expected volume returned by the

allocation of a volume of 𝐴𝑡
𝑘𝑛

= 𝑣 on the 𝑘-th dark pool at price 𝑝𝑛 .

The reward function corresponding to a superarm 𝐴𝑡 is defined as

follows:

𝑓𝝁 (𝐴𝑡 ) :=
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

𝜇𝑘𝑛𝐴𝑡
𝑘𝑛
𝑝𝑛 . (4)

Finally, the oracleOpt(·) is the same presented by [Nuara et al. 2018,

2022] where the budget therein considered corresponds to the asset

volume and the reward function is 𝐴𝑡
𝑘𝑛
𝑝𝑛 . Note that this algorithm

has been shown to be optimal, i.e., to provide the allocation in S
maximizing 𝑓𝝁 (·).

A CMAB algorithm 𝔘 is evaluated in terms of its expected

pseudo-regret, formally defined as:

𝑅𝑒𝑔𝑡 (𝔘) := 𝑡 𝑟∗ −
𝑡∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

E[𝑟ℎ
𝑘𝑛
]1{𝐴ℎ

𝑛𝑘
> 0} 𝑝𝑛, (5)

where 1{·} is the indicator function, the expected value E[·] is
taken w.r.t. the stochasticity of the algorithm and of the reward

function 𝑟ℎ
𝑘𝑛

.

4 DP-CMAB Algorithm
In this section, we introduce the DP-CMAB algorithm, designed to

solve the DPSOR problem by adapting strategies of general-purpose

CMAB algorithms to our setting. The core idea of our approach is

to estimate the matrix 𝝁, using either a frequentist or a Bayesian
approach. Specifically, we model the random variable 𝑋𝑘𝑛𝑣 whose

expected value corresponds to the probability that an allocation of

𝑣 units of the asset in the 𝑘-th dark pool at a price 𝑝𝑛 is successful.

Throughout the learning period, we store the quantities 𝛼𝑡
𝑘𝑛𝑣

and 𝛽𝑡
𝑘𝑛𝑣

, denoting the number of successes (with the full quantity

executed) and failures (partial executions) after 𝑡 rounds of an

allocation of 𝑣 units of the asset in the 𝑘-th dark pool at price 𝑝𝑛 .

In this way, we will build proxies for 𝝁, which will be used for

learning.
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Algorithm 2 No-propagation Update

1: for each arm 𝑖 ∈ 𝐴𝑡 corresponding to allocation 𝐴𝑡
𝑘𝑛

do
2: Observe 𝑟𝑡

𝑘𝑛𝑣
corresponding to arm 𝑖

3: if 𝑟𝑡
𝑘𝑛𝑣

= 𝐴𝑡
𝑘𝑛

then
4: 𝛼𝑡+1

𝑘𝑛𝑣
← 𝛼𝑡

𝑘𝑛𝑣
+ 1

5: else
6: 𝛽𝑡+1

𝑘𝑛𝑣
← 𝛽𝑡

𝑘𝑛𝑣
+ 1

7: return 𝜶 𝑡+1, 𝜷𝑡+1

The procedure corresponding to the DP-CMAB algorithm is pro-

vided in Algorithm 1. At the beginning of the learning period, the

algorithm initializes for each arm a Beta distribution with parame-

ters 𝛼𝑡
𝑘𝑛𝑣

= 𝛽𝑡
𝑘𝑛𝑣

= 1, i.e., sets a Uniform prior over the expected

value of the variables 𝑋𝑘𝑛𝑣 . At each time step 𝑡 , the algorithm gen-

erates a value 𝜃𝑘𝑛𝑣 which is used as proxy of 𝑣𝑋𝑘𝑛𝑣 (Line 6) to be

used in the oracle optimization procedure. We propose different

strategies to compute such a value, formally:

𝜃𝑡
𝑘𝑛𝑣

= 𝑣

(
𝛼𝑡
𝑘𝑛𝑣
− 1

𝛼𝑡
𝑘𝑛𝑣
+ 𝛽𝑡

𝑘𝑛𝑣
− 2
+

√︄
2 log(𝑡)

𝛼𝑡
𝑘𝑛𝑣
+ 𝛽𝑡

𝑘𝑛𝑣
− 2

)
,

𝜃𝑡
𝑘𝑛𝑣
∼ 𝑣 𝐵𝑒𝑡𝑎

(
𝛼𝑡
𝑘𝑛𝑣

, 𝛽𝑡
𝑘𝑛𝑣

)
,

𝜃𝑡
𝑘𝑛𝑣

= 𝑣 𝑄

(
1 − 1

𝑡 (log𝑇 )5
;𝐵𝑒𝑡𝑎(𝛼𝑡

𝑘𝑛𝑣
, 𝛽𝑡
𝑘𝑛𝑣
)
)
,

(6)

(7)

(8)

where𝑄 (𝜂, 𝐷) represents the quantile of order 𝜂 of a generic distri-

bution 𝐷 , and 𝐵𝑒𝑡𝑎(𝛼, 𝛽) is the beta distribution with parameters 𝛼

and 𝛽 . From now on, the three different flavors of the DP-CMAB

algorithm will be denoted with DP-CUCB, DP-TS, and DP-Bayes

UCB, respectively. The first two strategies are the adaptation to

our problem of the algorithms presented by Chen et al. [2013]

and Wang and Chen [2018], respectively. Instead, the third ver-

sion of the DP-CMAB is inspired by the Bayes-UCB algorithm,

designed by Kaufmann et al. [2012], which combines the frequen-

tist and Bayesian approaches by selecting the value of the arms

by constructing upper confidence bounds on the Beta posterior

distributions.

Once 𝜃𝑡
𝑘𝑛𝑣

has been computed, it is used to provide the alloca-

tion 𝐴𝑡 (Line 7) to use in the next round (Line 8). This allocation

is determined using Opt(·) on the matrix 𝜽 . After allocating the

shares, the agent receives feedback from the environment (Line 9),

that is used to update the Beta distributions of the arms. A stan-

dard update rule changes only the values of the parameters of the

arms which were included in the current allocation, i.e., the arms

corresponding to the entries of the allocation s.t. 𝐴𝑡
𝑛𝑘

> 0. Such an

update strategy is detailed in Algorithm 2, in which, depending if it

is a success (Line 4) or failure (Line 6) the 𝛼𝑡
𝑘𝑛𝑣

or 𝛽𝑡
𝑘𝑛𝑣

parameters

are updated, respectively. In the following section, we will present

other approaches for the update which exploit the correlations

present in the DPSOR problem.

From a theoretical point of view, the DP-CUCB and DP-CTS

algorithms provide guarantees on the upper bound of the regret

provided over a specific time horizon 𝑇 . First, we need to define

some quantities related to the specific problem that characterize

the regret. Let us denote with S𝐵 := {𝑆 ∈ S|𝑆 ≠ Opt(𝑉 , 𝝁)} as the

set of bad super arms. For any given underlying arm 𝑖 ∈ M, we

define:

Δ𝑖
min

:= 𝑟∗ − max

𝑆∈S𝐵 |𝑖∈𝑆
{𝑓𝝁 (𝑆)},

Δ𝑖
max

:= 𝑟∗ − min

𝑆∈S𝐵 |𝑖∈𝑆
{𝑓𝝁 (𝑆)},

(9)

(10)

Δmax := max𝑖∈M Δ𝑖
max

, and Δmin := min𝑖∈M Δ𝑖
min

.

Moreover, some assumptions are required for the DP-CUCB and

DP-CTS algorithms to have theoretical guarantees: monotonicity

and bounded smoothness of the reward function. Monotonicity

means that given two super arms 𝑆, 𝑆 ′ ∈ S such that for all 𝑖 ∈ M,

𝜇𝑖 ≤ 𝜇′𝑖 , the expected reward obtained by playing 𝑆 is smaller or

equal to the one obtained by playing 𝑆 ′, i.e., 𝑓𝝁 (𝑆) ≤ 𝑓𝝁′ (𝑆) for all
𝑆 ∈ S. This assumption is trivially satisfied by the DP-SOR problem

thanks to the linear dependence between the reward function, and

the expected volume returns 𝜇𝑘𝑛𝑣 . Instead, bounded smoothness

consists in the existence of a strictly increasing function 𝑔(·), such
that for any two expectations 𝝁 and 𝝁′, we have |𝑓𝝁 (𝑆 ) − 𝑓𝝁′ (𝑆 ) | ≤
𝑔(Λ) ifmax𝑘,𝑛,𝑣 |𝜇𝑘𝑛𝑣 − 𝜇′𝑘𝑛𝑣 | ≤ Λ. It is easy to show that in the DP-

SOR problem the bounded smoothness function is 𝑔(Λ) = 𝑉 𝑝𝑛 Λ.
Thanks to the above definitions and assumptions, we have:

Theorem 4.1 (Pseudo-regret of theDP-CUCBalgorithm [Chen

et al. 2013]). The Pseudo-regret for the DP-CUCB applied to a DPSOR
problem over a time horizon of 𝑇 satisfies:

𝑅𝑇 (DP-CUCB) ≤
∑︁

𝑖∈M,Δ𝑖
min

>0

(
12 ln(𝑇 ) (𝑉 𝑝𝑛)2

Δ𝑖
min

)
+

(
𝜋3

3

+ 1
)
·𝑉𝐾𝑁 · Δmax . (11)

Note that the proof of this theorem follows from the application

of Theorem 1 in [Chen et al. 2013] to the DPSOR setting.

Similarly, the DP-CTS agent, implements a strategy matching

the one proposed by the Combinatorial Thompson Sampling (CTS)

introduced by Wang and Chen [2018].

Theorem 4.2 (Pseudo-regret of theDP-CTSAlgorithm [Wang

and Chen 2018]). For any 0 < 𝜖 <
Δ𝑆

2𝑉𝑝𝑛 (𝑘∗2+2)
and 𝑇 ∈ N, the

pseudo-regret for the DP-CTS algorithm satisfies:

𝑅𝑇 (DP-CTS) ≤
∑︁
𝑖∈M

[2 ln(𝐾𝑉 ) + 6]𝑉 2 𝑝2𝑛 ln(22 |M |𝑇 )
min𝑆∈S Δ𝑆 − 2𝑉𝑝𝑛 (𝑘∗

2 + 2)𝜖
+ 𝑜 (ln(𝑇 )), (12)

where Δ𝑆 := 𝑟∗ − 𝑓𝝁 (𝑆) and 𝑘∗ is the number of arms contained in
the optimal superarms (assuming it is unique).

Similarly, this results is derived applying Theorem 1 by [Wang

and Chen 2018] to the DP-SOR setting. Summarizing, both these

results are providing no-regret problem-dependent guarantees with

order 𝑂 (ln𝑇 ). This consists in a guarantee that the algorithms are

converging asymptotically to the optimal solution of the DP-SOR

problem. We remark that, to the best of our knowledge, similar

results for the DP-Bayes UCB algorithm in a general setting have

not yet been provided in literature.

However, applying the algorithms provided by the bandit liter-

ature does not exploit the specific structure existing among the

volumes and prices of dark pools. In the following section, we will
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Figure 1: Propagation schemes for quantity (top) and full
(bottom) depending if the outcome of a dark pool allocation
was successful (right) or failure (left).

propose some modifications to the update rule of the Beta parame-

ters that exploit the dependence among the available arms.

4.1 Exploiting the DPSOR Problem
Characteristics: the Propagation Updates

To make the learning algorithm more efficient, we exploit some

properties of the dark pool environment. Specifically, we use the

fact that by setting a volume and a price, wemight infer information

on other price/volume pairs on the same dark pool once the reward

𝑟𝑡
𝑘𝑛𝑣

is revealed.
5

Let us focus on the asset quantities 𝐴𝑡 allocated at each round,

considering we want to sell a certain asset.
6
If the allocation 𝐴𝑡

𝑘𝑛

was successful (𝑟𝑡
𝑘𝑛𝑣

= 𝐴𝑡
𝑘𝑛
), then all the allocations 𝐴′

𝑘𝑛
< 𝐴𝑘𝑛

would have been successful too. Conversely, if the allocation 𝐴𝑘𝑛
returned a failure (𝑟𝑡

𝑘𝑛𝑣
< 𝐴𝑡

𝑘𝑛
), then each allocation 𝐴′

𝑘𝑛
> 𝐴𝑘𝑛

would have also failed. This inference is implemented in the update

presented in Algorithm 3, in which the parameters of the Beta

distributions are updated according to the above-described strategy.

A graphical representation of the quantity propagation update

carried out in a single dark pool is provided in Figure 1 on the

two top pictures. The blue dots represent the value of volume and

price of the order sent to a specific dark pool, while the green ones

are the volume/price pairs whose distribution is updated, thanks

to the propagation, with a success (update of the 𝛼𝑡
𝑘𝑛𝑣

parameter,

Line 4) and the red ones correspond to the volume/price pairs

whose distribution are updated with a failure (update of the 𝛽𝑡
𝑘𝑛𝑣

parameter, Line 7).

5
Note that a different approach would consider each darkpool/price pair as an indepen-

dent entity. However, such an approach would not take advantage of the information

that can be extracted from other prices coming from the same darkpool.

6
Note that we focus on the case in which we need to sell an asset, but the case in

which we are buying is symmetrical.

Algorithm 3 Quantity propagation

1: for each arm 𝑖 ∈ 𝐴𝑡 corresponding to allocation 𝐴𝑡
𝑘𝑛

do
2: if 𝑟𝑡

𝑘𝑛𝑣
= 𝐴𝑡

𝑘𝑛
then

3: for each 𝑣 ′ ≤ 𝐴𝑡
𝑘𝑛

do
4: 𝛼𝑡+1

𝑘𝑛𝑣′
← 𝛼𝑡

𝑘𝑛𝑣′
+ 1

5: else
6: for each 𝑣 ′ ≥ 𝐴𝑡

𝑘𝑛
do

7: 𝛽𝑡+1
𝑘𝑛𝑣′
← 𝛽𝑡

𝑘𝑛𝑣′
+ 1

8: return 𝜶 𝑡+1, 𝜷𝑡+1

Algorithm 4 Full propagation

1: for each arm 𝑖 ∈ 𝐴𝑡 corresponding to allocation 𝐴𝑡
𝑘𝑛

do
2: if 𝑟𝑡

𝑘𝑛𝑣
= 𝐴𝑡

𝑘𝑛
then

3: for each 𝑣 ′ ≤ 𝐴𝑡
𝑘𝑛

do
4: for each 𝑛′ ≤ 𝑛 do
5: 𝛼𝑡+1

𝑘𝑛′𝑣′
← 𝛼𝑡

𝑘𝑛′𝑣′
+ 1

6: else
7: for each 𝑣 ′ ≥ 𝐴𝑡

𝑘𝑛
do

8: for each 𝑛′ ≥ 𝑛 do
9: 𝛽𝑡+1

𝑘𝑛′𝑣′
← 𝛽𝑡

𝑘𝑛′𝑣′
+ 1

10: return 𝜶 𝑡+1, 𝜷𝑡+1

The reasoning applied to the volumes can also be applied to

the prices. Indeed, given an allocation 𝐴𝑡
𝑘𝑛
, if a success occurred,

we would have also succeeded for lower prices, i.e., for 𝐴𝑡
𝑘𝑛′

with

𝑛′ < 𝑛. Similarly, with a failure on a specific arm, the same would

have occurred for larger prices, i.e., for all 𝐴𝑡
𝑘𝑛′

with 𝑛′ > 𝑛. This
allows combining such an update on the prices with the one on the

volumes to maximize the amount of information provided within

a single round. The corresponding update of the Beta distribution

modeling the probability that an allocation is successful is provided

in Algorithm 4, while an example of the full propagation in a single

dark pool is provided in Figure 1 (bottom). Note that, even from the

provided toy example in the figures mentioned above, the number

of distributions that are updated by the full propagation is far larger

than the number of distributions updated with the classical and

quantity propagations.

5 Experiments
In this section, we analyze the empirical performance of the DP-

CMAB algorithms developed in the previous sections. To have a

realistic evaluation of what has been presented, we developed a

realistic simulation environment, i.e., based on real-world data, to

test such approaches. First, we analyze how the domain knowledge

helps the DP-CMAB agents to achieve a better performance by

evaluating how the different types of propagation affect the regret.

Subsequently, we compare them to the approaches proposed by

Agarwal et al. [2010]; Ganchev et al. [2010]. Finally, we evaluate the

performance of the proposed methods on five different asset models

to evaluate the robustness of our method when the underlying asset

is changing.



ICAIF ’22, November 2–4, 2022, New York, NY, USA Martino Bernasconi, Stefano Martino, Edoardo Vittori, Francesco Trovò, and Marcello Restelli

5.1 Experimental setting
In our experimental setting, the task consists in selling𝑉 = 10 units,

each of which is composed by 20, 000 shares, across 𝐾 = 10 dark

pools, and the prices span in the set P = {90, 91, . . . , 100}. This
process is repeated over a time horizon of𝑇 = 1, 000 rounds, where

each round is assumed to occur every 10 minute for a total trading

time of oneweek. The results are averaged over 20 independent runs

(semitransparent areas in the plots represent the 95% confidence

intervals of the empirical mean value).

Since the baselines do not allow to specify the price, we devised

the following approaches to apply such algorithms to the dark pool

scenario:

• The Random price selection the strategy selects a random

price in P at the beginning of every run 𝑟 ∈ [𝑅] and contin-

ues to sell the units at the fixed price for each 𝑡 ∈ [𝑇 ] of that
run;

• The Oracle price selection selects the oracle price 𝑝∗ ∈ P,
which is the best single price that maximizes the expected

cumulative dollar volume across all runs 𝑅. Formally, let 𝜆
𝑟,𝑡
𝑝

be the sum of the total liquidity available across all the 𝐾

dark pools for the run 𝑟 at time 𝑡 and price 𝑝 , the optimal

price is defined as:

𝑝∗ := argmax

𝑝∈P

1

𝑅

𝑅∑︁
𝑟=1

𝑇∑︁
𝑡=1

(𝑝 min{𝑉 , 𝜆𝑟,𝑡𝑝 }) . (13)

We remark that this strategy represents an oracle since an agent

would select 𝑝∗ only if it had perfect knowledge of the environment,

i.e., if it could have access to the actual underlying liquidity present

in the dark pools.

The performances of the different algorithms have been tested by

means of empirical average regret 𝑅𝑒𝑔𝑡 (𝔘) over the time horizon

𝑇 , for 𝑡 ∈ [𝑇 ] (the lower, the better), averaged over the different

runs, which is the empirical counterpart of the expected pseudo-

regret 𝑅𝑒𝑔𝑡 (𝔘) defined in Equation (5). Moreover, we also report

the averaged (over the runs) per-round dollar volume 𝑅𝑡 (𝔘) over
the rounds 𝑡 (the larger, the better).

The following experiments were obtained by running Python 3.7

multi-core, with NumPy and Pandas as the main necessary libraries.

The data generated for the experiments took ≈ 4 hours on a 64-core

Linux machine with Intel(R) Xeon(R) E5-4610 v2 @ 2.30GHz CPU.

5.2 Liquidity Generation
The generation of the underlying dark pools liquidity is a funda-

mental and essential aspect of our problem since it determines the

environment our algorithms will interact with. In what follows, we

describe the procedure to generate the liquidity of the dark pools

we used in the experiments.

First, we started from the historical market data of different

stocks in the form of order book messages of the executed bid

orders.
7
Then, the historical data is extracted from the data feed of

the NASDAQ exchange.
8
From this data, the order book messages

were generated following the steps detailed by Bernasconi-De-Luca

et al. [2021]. Subsequently, we removed the outliers by looking at

7
The order book messages we used implements the FIX protocol language. For more

details, see https://www.fixtrading.org/what-is-fix/.

8
The historical data can be found at ftp://emi.nasdaq.com/ITCH/Nasdaq%20ITCH.
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Figure 2: Regret of the different flavours of the DP-CUCB,
DP-CTS and DP-Bayes UCB algorithms.

the distribution of the number of orders and total volume exchanged

every 10 minutes, using the DBSCAN algorithm [Ester et al. 1996].

Finally, we partitioned the entire dataset into independent batches

of messages taken every 10 minutes. Based on a random subset

of these independent batches, for each dark pool, we generated

the liquidity matrix from which the dark pool liquidity is sampled.

Therefore, each dark pool provides different volumes corresponding

to the same price. This process has been repeated for five different

stocks: Apple (AAPL), Facebook (FB), Amazon (AMZN), Microsoft

(MSFT), and Google (GOOGL).

5.3 Experiments on the AAPL asset
In this section, we show the results of the experiments on the

liquidity generated from the data for the Apple (AAPL) order books

from the following days: 2019-1-30, 2019-3-27, 2019-7-30, 2019-8-30,

2019-10-30, 2019-12-30, and 2020-1-30.
9

Figure 2 provides the results in terms of the empirical regret of

our algorithms. Overall, the ones using the full propagation update

strategy achieve the best performance in terms of regret, i.e., these

flavors of the DP-CMAB algorithms exhibit a lower regret than the

corresponding versions exploiting the no propagation or quantity

propagation. This is due to the fact that this approach can gather

more information in a single round, converging faster to the opti-

mal arm. As experienced in many other settings in literature, the

TS-like approach is the one providing the best performances for

each typology of propagation. This is because it uses all the infor-

mation available about the distribution of the rewards, modeling

9
The results on each other asset are in line with the ones we reported here. In what

follows, we also present results summarizing them over the different assets.

 https://www.fixtrading.org/what-is-fix/
ftp://emi.nasdaq.com/ITCH/Nasdaq%20ITCH
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Figure 3: Regret of the DP-CMAB with full propagation up-
date and baselines.

Table 1: Regret (·1010) of DP-CMAB agents at round 𝑡 = 1, 000.

No prop. Quantity prop. Full prop.
DP-CUCB 1.51 0.95 0.60

DP-CTS 0.63 0.59 0.55

DP-Bayes UCB 1.59 1.05 0.65

the expected value as a Beta distribution and using it to generate

samples to feed to the DP-CTS algorithm.

Table 1 summarizes the average regret obtained by the DB-

CMAB agents after 𝑡 = 1, 000 rounds, i.e., at the end of the time

horizon. The reduction in terms of regret of the DP-CTS without

any propagation strategy w.r.t. the other approaches without prop-

agation is > 58%, meaning that we are considerably reducing the

losses, due to the lack of information, by using such an algorithm.

The use of the quantity propagation is most effective for the DP-

CUCB, and the DP-Bayes UCB approaches, leading to a decrease

of ≈ 35% of the regret, while it only provides a reduction of ≈ 6%

for DP-CTS. Similarly, the use of the full propagation (over the

quantities and prices) reduces the regret of the DP-CUCB and the

DP-Bayes UCB of ≈ 60% and that of DP-CTS of ≈ 12% w.r.t. their

counterparts with no propagation. Overall, these results justify

empirically the introduction of the propagation approach, which

significantly reduces the regret of the proposed algorithms. In the

following experiments on the AAPL asset, we will only report the

results using the full propagation since they are consistently better

than those obtained with the other flavors of our algorithm.

Figure 3 compares the regret of the DP-CMAB agents exploit-

ing the full propagation update and that of the baselines. For the

sake of presentation, we omitted the confidence intervals of the

baseline agents using the random price selection since they are
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Figure 4: Average dollar volumes of the DP-CTS agent with
full propagation and the baselines.

orders of magnitude larger than that of other methods. This pro-

vides evidence that such a strategy might lead to results having

high variance over the different runs, therefore making such an

approach not reliable in practice. Moreover, such baselines also

have larger regret than the other considered algorithms. This is

due to the fact that these algorithms may choose to play with an

excessively low price, thus missing the opportunity to gain a large

dollar volume, or with an excessively large price, thus being able

to allocate only a small fraction of the available liquidity 𝑉 .

The baseline agents implementing the oracle price selection

strategy perform better than their random counterparts thanks

to the a priori knowledge about how the liquidity is distributed

across the dark pools. However, the full propagation DP-CMAB

algorithms achieve a lower regret than the baselines, even without

requiring such prior information concerning the distribution of

the liquidity across the dark pools. The DP-CUCB and DP-Bayes

UCB algorithms provide a larger regret than those of the baselines

in the first 𝑡 = 200 rounds, but they manage to reduce the overall

regret at the end of the period at 𝑡 = 1, 000. This suggests that such

algorithms should be adopted over long time periods, while one

may use simpler strategies in the case the number of transactions

is expected to be small. However, the use of the DP-CTS algorithms

seems to be the best option over arbitrary time horizons since the

expected value of the regret is consistently lower than that of the

other algorithms.

Figure 4 shows the dollar volume per round of the different

algorithms. It provides empirical evidence that the DP-CTS algo-

rithm accumulates most of the regret in the early stages of the time

horizon (𝑡 < 100), due to the initial need to perform exploratory

allocations to gather enough knowledge about the environment.

Once the learning phase progresses and the algorithm collects in-

formation on the environment, the dollar volume converges to the

optimal value. This behaviour is also experienced by the Ganchev
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with oracle chosen price, which is constantly increasing its perfor-

mance over time. However, it seems that, after 𝑡 = 1, 000 rounds, it

has not yet reached the optimum, implying that its regret is larger

than the one of DP-CTS. The other baseline algorithms seem to

converge quickly to a specific solution which, unfortunately, is

far from the one selected by DP-CTS, e.g., the Agarwal random

strategy is providing, on average, a dollar value of ≈ 35% of the one

provided by DP-CTS. In conclusion, in this setting, we have that the

DP-CTS algorithm with the full propagation update is providing

the best results in terms of regret.

5.4 Experiments on all the assets
In this experiment, we run our algorithms and the baselines on the

five assets mentioned in Section 5.2. The experimental setting is

the same as the one described in Section 5.1 and has been repeated

for each different asset. As a performance index, we reported the

average ranking 𝑅𝑎 (and the corresponding standard deviation

𝜎𝑅𝑎) of each algorithm (the smaller, the better) we analysed in the

previous sections since the value of the regret over different assets

cannot be compared directly. Specifically, an algorithm having the

smallest regret for a specific asset has a rank 1, and the one having

the largest regret has a rank 13.

Table 2 reports the ranking of the different algorithms over

different rounds of the time horizon 𝑇 . The DP-CTS algorithm

is the one obtaining the best performance since it is able to provide

the lowest regret in each one of the five different settings. Similarly,

the sole use of the quantity propagation allows the DP-CTS to be

the second-best consistently. Finally, the third place is consistently

occupied by DP-CTS without propagation update for 𝑡 > 200. This

strengthens the idea that this algorithm is the one preferred to deal

with the problem of allocating volumes in the DP-SOR problem. The

other algorithms closely following the DP-CTS are the DP-CUCB

and DP-Bayes UCB in their flavor with full propagation. Therefore,

this provides further empirical evidence that the application of

the full propagation is providing a significant improvement to the

developed CMAB techniques. Following these strategies, we have

the two baselines having the information on the price. However,

such algorithms are not applicable in real-world settings since the

information about the optimal price 𝑝∗ is commonly unknown.

6 Conclusions
The focus of this paper is the design of a Dark Pool Smart Order

Routing algorithm that learns the optimal allocation strategy among

multiple dark pools. We accomplish this by introducing the DP-

CMAB family of algorithms, which extends the currently available

bandit literature by working with limits orders (thus specifying also

the price) rather than market orders. The DP-CMAB algorithms

consist of the application of state-of-the-art CMAB approaches

to the SOR framework. We show that the theoretical guarantees

on the Regret of the CMAB algorithms also hold in this context.

Furthermore, we exploit the financial properties of the environment

to make our algorithms more efficient. Finally, we compare the

empirical performance of our algorithmswith two baselines, i.e., the

works by Agarwal et al. [2010]; Ganchev et al. [2010], by leveraging

real data of lit exchanges. The results show that, in this scenario, the

DP-CMAB agents outperform the baseline algorithms by exploiting

the knowledge of the problem characteristics.

The next steps include the extension of the regret bounds for the

algorithms implementing the propagation updates and the devel-

opment of techniques able to optimize SOR for different kinds of

venues at the same time.
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