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ABSTRACT

Reinforcement learning has proven to be successful in obtaining
profitable trading policies; however, the effectiveness of such strate-
gies is strongly conditioned to market stationarity. This hypothesis
is challenged by the regime switches frequently experienced by
practitioners; thus, when many models are available, validation may
become a difficult task. We propose to overcome the issue by explic-
itly modeling the trading task as a non-stationary reinforcement
learning problem. Nevertheless, state-of-the-art RL algorithms for
this setting usually require task distribution or dynamics to be
predictable, an assumption that can hardly be true in the financial
framework. In this work, we propose, instead, a method for the dy-
namic selection of the best RL agent which is only driven by profit
performance. Our modular two-layer approach allows choosing the
best strategy among a set of RL models through an online-learning
algorithm. While we could select any combination of algorithms
in principle, our solution employs two state-of-the-art algorithms:
Fitted Q-Iteration (FQI) for the RL layer and Optimistic Adapt ML-
Prod (OAMP) for the online learning one. The proposed approach
is tested on two simulated FX trading tasks, using actual historical
data for the AUS/USD and GBP/USD currency pairs.
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1 INTRODUCTION

Automated Trading is one of the most interesting applications for
artificial intelligence techniques in the financial field, where the use
of Al is receiving growing attention in recent years both from the
point of view of investments [41] and research [24, 43, 53]. Financial
markets are indeed a formidable playground for Al algorithms as
the economic consequences of each action, i.e., the profits or losses
(P&L) that it generates, can be measured precisely.

This natural definition of reward especially favors the application
of the Reinforcement Learning (RL) paradigm, which builds on the
idea of improving the ability of an agent in interacting with an
external environment by providing a reward as feedback. This has
been highlighted in [43], where the authors demonstrated the RL
capability of exploiting statistical patterns and market inefficiencies
to optimize profits, and in [47], where RL has been applied to the
option hedging problem to minimize the hedging costs.

Nevertheless, the effectiveness of these techniques when applied
to real market settings strongly depends on the accuracy of the
model validation and selection procedure, which often consists of
back-testing the candidate strategies on the most recent available
historical data [43]. This approach is inherently flawed since it
builds on the assumption that the trading patterns that the selected
model will face in the test phase are the same as those encountered
in the validation set. However, it is well-known by practitioners
that trading opportunities are ephemeral and strongly dependent
on market conditions. Markets are indeed subject to regime shifts
[48], which violate the stationarity assumption of the standard RL
setting [40]. Non-stationary extensions of the RL setting have been
recently developed [26], but they typically rely on modeling either
the task distribution [33] or on the intra-task dynamics [52]. In
practice, such kind of models can hardly be estimated in the trading
setting, where, even in a stable regime, reliable market models are
difficult to learn [27].

In this paper, we propose a novel technique to tackle the non-
stationarity of financial markets which overcomes the aforemen-
tioned modeling issues. We develop a two-step approach, where an
algorithmic layer is added on top of an RL part to allow a profit-
driven online validation of the strategies produced by the latter. In
this way, the model selection procedure becomes dynamic and it
is not necessary to choose a strategy based on its performance in
past regimes. Practically, the first step consists in exploiting the
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favorable structure of the financial Markov decision process [5]:
we employ an offline RL algorithm to obtain a set of strategies,
trained under different conditions and possibly with different levels
of complexity. In the second step, an online learning algorithm is
in charge of updating, at the beginning of each trading day, the
weights associated with these strategies and it receives an expert
feedback [9] based on the P&L obtained by each strategy. These
weights directly determine the portion of the total budget that is
assigned to each expert to be invested.

We apply this approach to the foreign exchange (FX) market,
focusing on the AUD/USD and GBD/USD pairs. We chose to study
the FX market since data is readily available even for recent years,
so to have at hand different market regimes, and because the trading
costs tend to be very low when compared with the market volatility,
which increases the opportunities of finding profitable trades.

In Section 2, we illustrate the theoretical background, introducing
both the RL offline algorithm (FQI) and the expert learning approach
(OAMP). In Section 3, we present the most relevant literature before
discussing the problem setting in Section 4. In Section 5, we describe
the two-step approach in detail, focusing on how the two algorithms
interact. Finally, we analyze the experimental results in Section 6.

2 BACKGROUND

This section provides the necessary theoretical background in order
to understand the proposed approach.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is the branch of machine learning ded-
icated to sequential decision problems. In such setting, a decision-
maker, called the agent, interacts with some system, called the
environment, by means of a sequence of actions and it receives as
feedback both some observation of the environment current state
and a reward signal. If the process is Markovian and fully observable,
it falls within the mathematical framework of Markov Decision Pro-
cesses (MDP), which can be represented as a tuple (S, A, P, R, y).
S constitutes the space of the possible states of the environment
and A the one of the actions available for the agent. The transi-
tion kernel P(+|s, a) assigns the probability of reaching state s’ by
taking action a while in state s. Each state-action pair is mapped
to a reward by the reward function R : S X A — [—Rmax, Rmax]-
Finally the discount factor y € [0, 1] drives the agent to balance
instant rewards for future ones. The agent selects its action based
on a policy, 7(-|s), which assigns a distribution over the action
space A to each state s.

The quality of some policy 7 is measured by its associated action-
value function Q, : S X A — R. It denotes the expected return
starting from state s, taking action a, and then following policy 7.
In some cases trajectories are modeled to have a fixed horizon T:

Qn(s,0) = Z Y'RGst.an)lso =s,.a0=a|. ()

St+1 ~7)( |se,ar)
are1~7(-[see1)

The goal of RL methods is to find the optimal policy 7* such that:

V(s,a) € S X A : Qpx(s,a) = sup Qx (s, a) = Q*(s,a), (2)
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where Q* is called the optimal Q-function. When both the transition
model P and the reward function R are known, the MDP can be
solved by means of dynamic programming approaches, exploiting
the Bellman equation [40]. On the other hand, if the model is not
available, RL techniques can be employed to approximately recover
the optimal policy and/or value function.

2.2 Persistent Fitted Q-Iteration

Fitted Q-Iteration (FQI) [18] is a model-free, off-policy, and offline
algorithm that aims to learn the optimal policy without directly
interacting with the environment. As an offline algorithm, it esti-
mates Q* starting from the information gathered from the previous
agent-environment interactions, and collected in the dataset:

k k k k
D ={(st,a;,5;,1:Tr41) | k=12, |D[},

where s;11 is the state that the agent reaches after applying action
a; in state s; while collecting a reward r41 for this transition. As a
model-free and off-policy algorithm, it builds from D a sequence
of Q-functions where each element is obtained by regression of the
optimal Bellman operator given the previous Q-function. Specifi-
cally, at the N-th iteration, given the Q-function approximated at
the previous iteration, Qn—-1(s, a) Y(s, a), Qn is trained on the set:

TSpor = {(i*,0F) [k = 1,2,.., |D]}

where the input is a state-action pair (i.e., ik = (sf, a’lf)), and the
output is the application of the optimal Bellman operator to Qn_1:

k k k
0" =ryq +ymaxQOn_1(s;,q, a).
acA

FQI can be understood intuitively as expanding the optimization
horizon at each iteration. However, as the number of iterations
increases, the approximation errors from the Bellman equation
propagate and the sequence of Q-function may not converge to Q*.

Persistent FQI [35] extends the original algorithm to take into
account the possibility of persisting actions for more than a sin-
gle step. Action persistence involves repeating each action for a
certain number p > 1 of consecutive steps. It allows to tune the
control frequency which plays a fundamental role in the learning
process. Indeed, when a continuous-time problem is transposed into
a discrete-time MDP framework, a time discretization and therefore
control frequency is introduced. A higher frequency gives the agent
more control opportunities but also decreases the signal to noise
ratio and negatively impacts sample complexity. Thus, higher fre-
quency agents could potentially earn greater returns but may have
more difficulties during learning. Lastly, persistence has an effect
on the optimization horizon. A higher persistence agent requires
fewer iterations to reach the same horizon than a less persistent
agent. Therefore persistence is another tool useful to deal with the
trade-off between control capacity and learning ability.

2.3 Online Learning

Online learning with expert advice. In online learning with
expert advice [9], the agent (also referred to as the learner) has to
guess the outcome y; € Y based on the past sequence y1, 2, ..., Yr—1
of events that occurred in the outcome space Y. To do that, it is
allowed to choose among the suggestions of a set of experts E. At
each step in the prediction game, every expert e € & predicts an
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Algorithm 1: Optimistic Adapt ML Prod

1 Initialize: K experts

k _ 1 7k _ k_1
2 Setw0 _?’lo =0,7, —Z,Vke [K]
3 fort=1,2,..,Tdo

. k ak
4 Update Wf—1 = Wfile”t—lmt
k ok
k= M1 Vi1
° Update py = (Me-1.We-1)
6 Sample an expert according to p;, then receive loss vector 1,

k —minll [— WK
! Update 7y = min ) 1+Zse[z1(r§m§>2}
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k .k k 2.k ky21 .k
8 Update W[k = I:Wf_le”t—lrt ~(ny_ )" (rp=my) ] Tt-1

element a.; € A and incurs a loss f(ae s, yr). After its choice, the
agent suffers a loss corresponding to the selected expert, but it is
also allowed to observe all the other losses, differently from the
bandit [28] and RL settings. Another important difference with the
MDP formulation consists in not taking into account the process
dynamics, thus in the lack of the concept of state. In the adversarial
setting [9], the environment, by knowing the decision a; of the
agent, can choose deterministically the outcome y; maximizing
the loss f(ar, yr). When the environment is not a real adversary,
this setting may be overly conservative, thus, milder assumptions
should be considered instead.

Adversarial and stochastic non-stationary settings. In the
aforementioned online learning framework, the non-stationarity
is due to an adversarial process since the environment can adapt
to the behaviour of the agent. We refer to it as adversarial non-
stationary setting. Instead, in the stochastic non-stationary setting,
the dynamics evolve independently from the behaviour of the agent.
This difference can be summarized in the following way. In the
stochastic non-stationary setting, the environment chooses the
(non-stationary) dynamics for the entire process to come at the
beginning of the process. In the adversarial non-stationary setting
instead, at each step of the process, the environment chooses the
dynamics for the step to come. Clearly, this second setting is much
more demanding.

Optimistic Adapt ML Prod. The Optimistic Prod with multiple
adaptive learning rates (Optimistic Adapt ML Prod or OAMP) [50]
is an expert learning algorithm that is focused on learning the
optimal policy in non-stationary environments, including both
switching and drifting dynamics. Furthermore, it is a parameter-free
algorithm in which the learning rates 7, are adjusted dynamically,
as explained in [50]. Finally, being an online learning algorithm, no
training phase is needed. Analyzing in detail the steps of Optimistic
Adapt ML Prod described in Algorithm 1, we can notice that the
weights w;, and consequently the probabilities p; associated with
each expert are updated based on the instantaneous regret r; and
an appropriate estimate m; of the former defined as follows:

k= (pe )y — IF, mf = (pr,li—1) — IF ©)

where 1; is the vector of losses measured by the experts at time
t. It is not straightforward to calculate m;, fortunately we can
approximate it efficiently as explained by the authors in [50].
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3 RELATED WORKS

In this section, we first present a brief, general overview of both
RL techniques and online learning algorithms applied to trading.
Then, we focus on some RL approaches developed to deal with
non-stationary environments.

3.1 RL for Trading

The use of RL in trading has received increasingly more attention
for its goal being well aligned with trading objectives [3, 20, 34]. The
first applications to trading using recurrent RL (RRL) have shown
promising results [22, 37]. In [14] the authors moved forward by
introducing adaptive RL, a three-layer trading system consisting
of an RRL algorithm as base layer, a risk management overlay and
a dynamic utility optimization layer. Later works have confirmed
this encouraging direction in a variety of contexts, including high
frequency trading using order book information [7] with a policy
based approach or stock trading using OHLCV data [45] with DQN
[36].

Focusing on the FX setting, different approaches can be found
in the literature. In [22] an application of techniques from the
seminal work of [37] was considered in a different setting, with
several currency pairs. Q-learning has been first employed in [15]
to trade GBP/USD. Later in [16] Q-learning was combined with
a genetic algorithm to trade GBP/USD, USD/CHF, and USD/JPY.
More specifically, the role of the genetic algorithm was to select
an optimal subset of technical indicators to build the environment
state. More recently its deep version, DQN has also been employed
in [8, 25, 44, 49]. In particular, the authors of [44] showed that
their trained agent outperforms an experienced trader when con-
sidering the EUR/USD pair. On the other hand, [49] applied DQN
together with PPO to optimize the Sure-Fire statistical arbitrage
policy. Three different currency pairs were considered, namely
EUR/USD, GBP/USD and AUD/USD, and exchange rate times series
were encoded using the Gramian Angular Field method. While, in
principle, DQN could implicitly tackle non-stationarity being an
online algorithm, in practice its divergence issues [1] risk to be
exacerbated by drifts. Offline approaches have also been employed
by [5, 43]. While these works share similarities with our approach,
in their case the model validation is performed with a fixed dataset
preceding the test set. Whenever a drift happens between the vali-
dation and the test, such approaches select a sub-optimal model.

3.2 Online Learning for Trading

Online learning has been used extensively in trading, though with
a focus on multi-asset trading, specifically portfolio optimization.
This led to a stream of the literature called Online Portfolio Op-
timization (OPO) [29]. The first algorithm in this field is UP [12],
followed by many others such as ONS [2, 23] and OGDM [46]. The
ONS algorithm has been shown to provide good performance in
terms of regret, as well as feasible computational complexity. OGDM
focuses on keeping transaction costs under control. More recently,
the Conservative Projection (CP) [4] was devised to tackle the prob-
lem of beating a benchmark in portfolio optimization. The main
differences of OPO, compared to the expert learning approaches
considered in this paper is that OPO algorithms have regret guaran-
tees with respect to the best constant rebalancing portfolio, while in
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the expert learning case the objective is to have regret guarantees
with respect to the best expert.

3.3 RL in Non-Stationary Environments

Non-stationary RL The work in [6] considers the possibility for
the environment’s dynamics to change in either abrupt or smooth
manner. Part of the literature considers shifts in the dynamics
in between episodes of interacting with the environment. In this
case, the different dynamics are referred to as tasks. The same
dynamics may be experienced multiple times by the agent. In [32]
a novel algorithm is proposed, namely Restarted Q-Learning with
Upper Confidence Bounds (RestartQ-UCB), which adopts a simple
but effective strategy to reset the memory of the agent according
to a calculated schedule. More specifically, the approximation of
an optimistic action-value function is re-initialized after a certain
number of episodes based on an extra optimism term (in addition
to the standard Hoeffding/Freedman-based bonus) that takes into
account the shift of the transition kernel (and/or of the reward
function) across different episodes, which is assumed to be either
abrupt or gradual. However, dynamics may also shift in between
steps inside an episode. This setting is more challenging since the
agent must take into account future non-stationarity to measure
the effect of its actions. In the extreme case, the agent may not
even experience some portions of the environment twice. Some
approaches tackle these problems by implementing change detection
methods to track the non-stationarity of the environment [13, 39],
learning task generic together with task specific coefficients for the
policy [19, 33], or adapt the policy online by policy iteration [10, 31].
Online learning for RL has been studied more theoretically in a
setting where rewards may evolve over time [17, 30]. In [51] a black-
box reduction is designed that turns an RL algorithm with optimal
regret in a (near-)stationary environment into another algorithm
with optimal dynamic regret in a non-stationary environment. The
high-level idea behind this method is to schedule multiple instances
of the base algorithm with different durations based on a carefully-
designed randomized scheme. Then, based on the rewards collected
by each of these instances, a sort of regret analysis is performed
to check whether the MDP’s dynamics changed, in which case
the training phase needs to be restarted. However, despite their
theoretical guarantees, these approaches are rarely used in practice.
A more in-depth look on these approaches can be found in [26] and
[38].

4 PROBLEM FORMULATION

In this section, we first formalize the FX trading task as an MDP
and, then, we discuss its non-stationary extension.

4.1 The Forex MDP

Episodic setting. We decided to model the Forex trading prob-
lem as an episodic MDP, where each episode corresponds to a
trading day. A trading day begins at 08:00 and ends at 18:00 CET,
the interval in which most of the markets are open and so one can
expect a good liquidity, furthermore it enables the possibility of
real-time monitoring of the algorithms. The agent must take an
action every p minutes, where p corresponds to the persistence.
At the end of the episode, the agent is forced to close its position.

Riva, Bisi, Liotet, Sabbioni et al.

There are two reasons behind this choice: first of all, considering
fixed-length episodes simplifies the learning problem and allows to
work in the undiscounted setting (i.e., y = 1); secondly, it allows to
neglect overnight funding costs.

State space. We consider two main components of the state: the
agent’s portfolio and the market information. For the former, we
allow three possible portfolio allocations: Short, Flat, and Long po-
sitions, denoted, respectively, with —1, 0, and 1. This component
evolves in a deterministic way, according to the selected action.
For the latter, we recall that, in order to properly model the Forex
trading environment as an MDP, it is fundamental to ensure that
the Markov property holds. This means that each new state should
be independent from its predecessors given the last. To ensure this
property, the state should, in principle, include all the information
related to past market observations that may have affected the tran-
sition to the next state. However, in practice, only a finite window
of market information can be given as input to the agent. Following
[5, 42], we consider the last 60 exchange rate variations! between
consecutive minutes, the current time of the day and the current
day of the week. While time features are deterministic quantities,
rate variations are conditioned to the market regime.

Action space. The action consists of the portfolio allocation that
the agent wants to keep for the next p minutes. The action set
A(s) is identical for each state s € S except for the last step of the
trading day where the agent is forced to close any open positions.
We further make the assumption that trades have a relatively small
size and do not cause an impact on the market such as slippage.
Reward function. Given the current portfolio allocation x;, the
current exchange rate p;, the action taken a; the next exchange
rate pr+1 and the fee rate @, the reward received by the agent at
persistence p is defined as:

re+1 = ar(P(rep) — Pr) — Plar — xt. (4)

In other words, the reward is obtained by two terms: the first one
consists in the gain (or loss) associated with the exchange rate
variation, whereas the second one corresponds to the transaction
fee that has to be paid to change portfolio allocation. We assume
that ¢ is equal to a fixed percentage of the total amount of base
currency traded (ie., ¢ = 1e7>).

4.2 The Non-Stationary Environment

The main drawback of the previous formulation consists in defining
the trading process as a single MDP, which implies a stationary tran-
sition kernel. This amounts to assuming that price patterns evolve
according to the same probability distribution. Such a view can be
challenged by practitioners, who often experience abrupt transi-
tions between different market regimes. Market volatility reflects,
indeed, traders’ attitude toward risk, which is deeply influenced, in
turn, by external factors, such as economics or politics.

In this work we move towards a more realistic setting, in which
price dynamics are modelled as non-stationary, hence, a time-
dependent transition kernel #;(-|s, a) needs to be taken into ac-
count. We have assumed trades to be small-sized, the dynamics
are therefore not influenced by the agent’s actions. We further

!Computed as the differences between the price at a certain time-step and the previous
one, normalized by the value of the former one.
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assume that dynamics are constant within each day, that is, for
each trading day d, the agent is presented with a trading task
Tq = (S, A, Py, R y) where P ; remains constant. This assump-
tion is not very restrictive since market regimes, when there are
no external events influencing the price process (e.g., Fed rate hike
announcement) usually have longer time-scales than the single day.
Moreover, we expect RL policies to be able to distinguish between
intra-day periodical regimes, as shown in [5]. As we discuss in the
next section, this hypothesis is important to justify our approach.

Market regime drifts are difficult to predict, since they typically
depend on a combination of the aforementioned external causes.
Therefore, differently from other works in the non-stationary RL
field, we do not make any further assumption on the task dis-
tribution or the market regime dynamics such as smoothness of
non-stationarity [10], known task patterns [39] or task drawn from
an i.i.d. fixed distribution [33].

5 METHODS

Without explicitly modelling neither task distribution or dynamics,
it is difficult to apply state-of-the-art non-stationary RL approaches
(see Section 3.3). On the other hand, for a practitioner, forcing
unrealistic assumptions can be even more detrimental from the P&L
viewpoint. In this section, we develop an alternative approach by
combining expert RL policies with an online validation procedure by
means of an expert learning algorithm. The employed architecture is
shown in Figure 1. At the intra-day level, each expert, independently
from the others, takes an action, which is then weighted by its daily
budget assigned to an online learning algorithm, namely OAMP
(see Section 2.3). At the daily level of interaction, OAMP gathers an
expert feedback, by decoupling the different contributions of each

Daily
Intra-day
— Expert 2 > acuy —> +
o sy —>|
State ) ‘ Action
T T T
Ry Ry, Ry
| | |
> Ry > R Y Ru
g 7 7
v Yo
| oawp |
T T T
WN w2 W1

Figure 1: The inner box represents the intra-day interaction
with the environment, the outer one represents the daily one.
Blocks with the + symbol stand for component-wise sum.

ICAIF 22, November 2-4, 2022, New York, NY, USA

expert in order to update its weights.? In what follows we give the
details about how we built both levels of this architecture.

5.1 FQI Training

The experts given as input to the online learning algorithm are
trading agents trained with FQI. The FQI training set is generated
starting from 2 years of market data observations, which we believe
is along enough time interval to include a variety of market regimes.
All the trading agents are trained by performing multiple runs of the
FQI algorithm to take into account the randomness of the regression
method chosen to estimate the Q-function. Each of these agents is
characterized by a particular combination of hyperparameters and
action persistence. Therefore, similarly to the single-expert setting
analysed in [5, 43], the trading performances of the trained agents
are successively validated to determine the best set of parameters.
Specifically, the agents are ranked based on the average cumulative
return achieved at the end of the validation year. Instead of choosing
a single strategy, we select the best three agents as experts for the
online learning algorithm, with the only purpose of reducing the
number of experts given as input to the external layer. As observed
in [43], a single RL model may overfit the validation set, hence,
perform poorly in the following test phase. Therefore, selecting
multiple agents allows us to be robust w.r.t. this possibility.

5.2 Online Learning with FQI Experts

Training RL policies with different hyperparameters has the effect
of specializing experts for different conditions. The purpose of the
online learning layer of our architecture is to automatically select
the expert that best fits the current regime, based on its performance.
We employed OAMP algorithm described in Section 2.3. We stress
two important points about our implementation of the method.

First, we decided not to update the experts’ weights after each
trading step but to do that once at the beginning of each trading day
and to maintain them unvaried during the rest of the episode. The
reason behind this choice is related to the assumptions we made
about the non-stationarity of the environment. Since we expect that
the transition kernel will more likely drift between two consecutive
trading days rather than in the middle of an episode, we believe that
it is more appropriate to evaluate the experts’ performances (and
update their weights accordingly) on a daily basis. Therefore, we
defined the vector of daily losses l; as the negative mean cumulative
return earned by the experts during the trading day. On contrary,
allowing the agent to change expert during the day would have
modified the portfolio held by the current expert, acting as a state
for the next one, thus violating one the hypothesis of the online
learning framework.

The second aspect regards the online expert selection procedure.
One possibility was to first sample an expert at the beginning of each
episode based on the probability distribution given by the vector of
weights and then trade according to its policy. Luckily, this further
element of randomness can be avoided, by assigning instead to each
expert e a portion of the total budget proportional to its weight p; .
according to OAMP. At each trading step, all the actions suggested
by the experts are first collected, then combined together to execute

2The decoupling can be done thanks to the hypothesis of negligible impact on the
market.
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a unique trade on the market. The action proposed by an expert is
in turn given by the combination of the actions proposed by that
expert when trained with different seeds. To summarize, at each
trading step the action executed on the market is given by:

K K 1 S
ar = Zpt,eat,e = ZPt,eg Z dte,s
e=1 e=1 s=1

where S corresponds to the number of different seeds used to train
each expert, while a; ¢ s represents the action suggested at trading
step ¢ by the expert e trained with seed s. As a consequence, while
each FQI expert is limited to take an action in the discrete set
A(s) = {-1,0,1}, the action effectively executed on the market
may vary continuously between -1 and 1.

6 EXPERIMENTS

In this section, we first introduce the experimental settings and
discuss the preliminary steps required to apply the Optimistic Adapt
ML Prod algorithm. Then, we briefly describe the baseline strategies
against which we compare the performances of the online learning
algorithm. Finally, we analyze the experimental results we obtained.

6.1 Dataset Generation

Market observations of two different currency pairs, GBP/USD and
AUD/USD, were collected from 2017 to 2021 from an open dataset
downloaded from HistData3. As introduced in Section 5.1, the first
two years were used to train our FQI trading agents, whereas the
third one to validate these models and select the best experts. Finally,
market data from 2021 were used to assess the performance of the
Optimistic Adapt ML Prod algorithm and compare it with the results
obtained by the baseline strategies described in 6.3.

As explained in Section 2.2, the FQI training set is derived from
the experience gathered from the past, which is represented by the
set O = {(sf, a];,sfﬂ, rfﬂ) |k = 1,2,...,|D]|}. Therefore, starting
from the collected market data, we first filtered them in order to
focus on the selected time window defined in Section 4.1. Then,
we built the vectors of market features by computing the set of
exchange rate variations between consecutive minutes and adding
the time of the day and the day of the week. Finally, for each of
these vectors, we simulate all the possible (x;, a;) combinations
and compute the reward r;41 according to Equation 4.

6.2 Model Selection

In order to select the best set of trading experts to give as input
to the online learning algorithm, we decided to train two different
families of FQI agents, each of them characterized by a certain
action persistence (i.e., 5 and 10) and composed of a set of models
trained with different combinations of FQI hyperparameters.

Due to its great performances in terms of accuracy, but above all
because of its high scalability and computational efficiency when
dealing with very large training sets, we chose XGBoost [11] as
the regression method to approximate the Q-function at each iter-
ation of the FQI training algorithm. Based on our experience and
following what is suggested by [21], given a reasonable value for
almost all the algorithm hyperparameters, it is sufficient to tune the

3https://www.histdata.com/download-free-forex-data/
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Table 1: Trading performances in validation (2020) of the best
FQI iteration for each value of min child weight and for each
action persistence. Performances are measured in terms of
P&L (mean =+ standard deviation) expressed as a percentage
of the total amount of base currency invested.

[ Hyperparameters | GBP/USD [ Aup/UsD ]
| Pers. | MinChildWeight | Iter. | P&L | Iter. | P&L |

500 2 8.25+293 2 4.99 + 2.64

1000 5 9.00 + 3.31 1 9.74 £ 0.51

5000 4 12.39 + 0.82 9 8.86 +0.30

5 10000 6 17.27 £ 4.02 8 6.92+1.74

20000 4 18.23 +2.05 1 10.77 £ 1.16

40000 1 16.86 = 0.27 3 14.47 £ 2.63

60000 1 16.06 + 1.20 1 19.95+1.13

30000 2 | 1480x1.23 | 2 6.05 + 0.39

500 8 13.28 £ 0.65 9 14.50 + 3.02

1000 9 14.55 + 1.72 4 16.24 £ 0.76

5000 2 21.19 £ 0.68 9 18.01 + 3.66

" 10000 6 | 22.03+007 | 2 | 14.87+1.33

20000 5 23.62 £1.27 10 | 16.15+0.68

40000 1 24.70 £1.99 7 12.42 £3.28

60000 3 25.65 +0.41 1 14.68 + 0.22

80000 7 17.11£0.23 1 11.74 £ 1.80

min child weight hyper-parameter to regulate the model complex-
ity. Typically, the higher the threshold is, the simpler the trained
model becomes, as trees are forced to consider a greater number of
samples to perform a split, hence complicated patterns are excluded.
On the other hand, a low min child weight allows for more complex
models, but it also increases the risk of overfitting the training data.

As mentioned in Section 2.2, along with the regression method
parameters, one has to tune the number of FQI iterations. As it
grows, the optimized horizon increases, allowing the model to learn
longer-term patterns. However, iterating the Q-function fitting
procedure leads to the propagation of approximation errors.

Summing up, for each value of persistence, we have to tune
the XGBoost min child weight parameter and the number of FQI
iterations. Due to limited computational resources, we select a fi-
nite set of different min child weight values and train each model
with ten iterations of FQI. Moreover, we perform three different
runs of the training algorithm to take into account the random-
ness of the XGBoost regression method. As discussed in Section
5.1, to determine the best set of FQI trading experts we compare
the performance of the trained agents on the validation set. For
each persistence value, we first determine the best iteration for
each min child weight value (see Table 1), then, we select the three
models that attained the highest average cumulative return at the
end of the validation year.

6.3 Baselines

In both trading scenarios, we decide to evaluate the performance
of the OAMP algorithm comparing them with the results obtained
by two benchmark strategies: the Buy&Hold and the Sell&Hold.
Both are passive strategies that consist in keeping a constant port-
folio position, respectively, long or short. Moreover, we consider
as baseline the expert that would have been chosen in the single-
expert setting, that is, the one which attained the highest average
cumulative return at the end of the validation year.
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AUD/USD: OAMP vs Trading Experts
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Figure 2: The left column reports results for GBP/USD and the right one for AUD/USD. Then, from top to bottom: cumulative
return obtained by OAMP in test (2021) compared to the trading experts; evolution of the experts’ weights during test (2021);
cumulative return obtained by OAMP in test (2021) compared to baseline strategies, i.e., Buy&Hold (B&H) and Sell&Hold (S&H),
and the expert that best performed in validation. Performances are reported as percentages w.r.t. the invested amount. Experts’
cumulative returns are reported together with the 95% confidence intervals.

6.4 Results

Multi-expert online learning vs experts. In Figure 2, at the
first row, the performance of the OAMP algorithm is compared with
those achieved by the FQI trading experts. As expected, the P&L
generated by the online learning algorithm in both trading scenarios
is close to the average of the cumulative returns earned by all the
experts in the test set. The second row of the same figure shows
the evolution of the experts weights during the same year instead.
As desired, the experts that obtained the highest yearly returns (i.e.,
Expert 4 in the GBP/USD trading scenario and the Expert 0 in the
AUD/USD trading scenario) are those characterized by the highest
weights at the end of 2021. On the other hand, experts clearly
performing worse than all the others, as Expert 2 in the AUD/USD

and GBP/USD trading scenarios, reach a negligible weight at the
end of the year. Finally, it can be observed that, some of the other
weights do not significantly move away from the initial value (i.e.,
1/K). This behaviour is due to the similar performances obtained by
such experts in the analyzed period, and it is perfectly sound w.r.t.
our goal: indeed, whenever experts perform equally well in some
regime, there is no reason to weight one more than another one.
Multi-expert online learning vs baselines. The last row of
Figure 2 compare our approach with the aforementioned baselines.
It should be noted that our method always guarantees the best
performance among the considered strategies for the year in exam.
As shown in the figure, it earned a P&L significantly higher than
the B&H and S&H strategies in both trading scenarios. Moreover,
the online learning algorithm ensured greater or equal returns than
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those obtained by the experts that would have been chosen through
the offline validation procedure. This highlights the advantage of
using an online learning algorithm as a model selection approach.
While in GBP/USD the model selected with the validation set per-
forms equally well w.r.t. our strategy, the same cannot be said for
the AUD/USD scenario. In this case, our approach obtains a positive
return, whereas the baseline chosen by means of validation ends
the year without obtaining any profit.

7 CONCLUSIONS

Financial markets represent a difficult challenge for Al-based trad-
ing due to their intrinsic non-stationary nature. Reinforcement
Learning (RL) algorithms’ effectiveness strongly depends on the
accuracy of the model validation and selection procedure, which
often consists of back-testing the candidate strategies on the most
recent available historical data. However, this approach is biased by
the assumption that the trading patterns the selected model will see
in the test phase are the same as those observed in the validation
set. Markets are indeed subject to regime shifts that violate the
stationarity assumption of the standard RL setting.

In this paper, we propose a novel technique to tackle the non-
stationarity of financial markets based on a two-step approach,
where an algorithmic layer is added on top of an RL method to
allow a profit-driven online validation of the models produced by
the latter. In practice, the first step consists of training a set of
different trading experts by employing an offline RL algorithm, i.e.,
Fitted Q-Iteration (FQI). These experts are possibly trained under
multiple market regimes and with different levels of complexity.
Then, in the second step, an online learning algorithm, i.e., OAMP,
is in charge of updating, at the beginning of each trading day, the
experts’ weights based on the P&L they obtained the day before.
These weights directly determine the portion of the total budget
that is assigned to each expert to be invested.

We decided to apply this approach to the foreign exchange (FX)
market, especially to the AUD/USD and GBD/USD pairs, because of
low transaction costs and ease of historical market data download.
Experimental results show that the P&L generated by the OAMP
algorithm in both trading scenarios is close to the average of the
cumulative returns earned by all the experts. The OAMP algorithm
manages to overperform all the baselines considered, and, more
significantly, it ensured greater or equal returns than those obtained
by the experts that would have been chosen through the offline
model selection procedure. This empirically prove the advantage
of using an online learning algorithm to dynamically validate and
select the best model.

Even though the intended objectives have been reached and
significant advancements have been made, different aspects of our
approach can still be improved. Future research may indeed focus
on enhancing either the first or the second layer of the proposed
trading pipeline. For what concerns the RL layer, more can be done
to produce experts which are representative of different market
regimes, in order to guarantee a greater level of diversity among
the experts themselves. To achieve this goal, an explicit partition of
the historical dataset may be necessary, for instance by means of
change point detection approaches. Regarding the external layer, de-
spite its strong theoretical guarantees on drifting scenarios, OAMP
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may suffer from a lack of responsiveness in some cases. While
loss engineering can fix the issue in most situations, it would be
interesting to study the problem more in-depth from a theoretical
perspective. A further direction of work could consist in extend-
ing the presented framework to deal with intra-day drifts. To do
that, we would need to allow the second layer to act at a higher
frequency, modifying the internal state after each weight balancing.
A good fit for this setting could consist in applying a hierarchical
RL approach, substituting the external online learning layer with a
high level RL agent.
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